Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Xenon Light for Main and Dipped Beam

1998-02-23
980005
Xenon (HID) technology is one of the mile-stones in developing process of car lighting. The first step was to combine this technology with free-form reflector technology. The result was a high performance dipped beam beam-pattern with three times more light output compared to a halogen system. The next step of improvement is “Bi-Xenon”. It makes sense to use the enormous light output of a Xenon light source for two light functions (Main beam and dipped beam) in a single pocket headlamp system. This leads to new lighting performance and design freedom in headlamp technology. In this paper the technological aspects of system realization will be described. New solutions in lighting strategy including modern actuators which handle optical elements to switch between two light functions had to be found.
Technical Paper

XMM-NEWTON Thermal Design and In-orbit Performance

2000-07-10
2000-01-2372
The XMM-NEWTON satellite is the ESA X-ray spaceborne observatory covering the soft X-ray portion of the electromagnetic spectrum. XMM-NEWTON has been put in orbit on December, 10th 1999 by an Ariane 5 single launch. The spacecraft has a conventional thermal design that takes full advantage of the stable environment provided by its high altitude/long period orbit and by the limited variation of solar attitude angles in order to provide a stable platform for the telescope system. The precise geometry and alignment of the telescope system impose strict temperature requirements so that not only temperature gradients have to be kept small but also, and more importantly, time-variations of the gradients have to be minimised. In the paper, the thermal behaviour of the spacecraft as verified by its thermal test programme is compared with the early in-orbit temperature measurements.
Journal Article

X-ray Imaging of Cavitation in Diesel Injectors

2014-04-01
2014-01-1404
Cavitation plays a significant role in high pressure diesel injectors. However, cavitation is difficult to measure under realistic conditions. X-ray phase contrast imaging has been used in the past to study the internal geometry of fuel injectors and the structure of diesel sprays. In this paper we extend the technique to make in-situ measurements of cavitation inside unmodified diesel injectors at pressures of up to 1200 bar through the steel nozzle wall. A cerium contrast agent was added to a diesel surrogate, and the changes in x-ray intensity caused by changes in the fluid density due to cavitation were measured. Without the need to modify the injector for optical access, realistic injection and ambient pressures can be obtained and the effects of realistic nozzle geometries can be investigated. A range of single and multi-hole injectors were studied, both sharp-edged and hydro-ground. Cavitation was observed to increase with higher rail pressures.
Technical Paper

X-Ray Computed Tomography for Verification of Rivet Installation Assessment Techniques

1998-09-15
982140
High quality rivet installation is of critical importance to the aerospace industry, and the existence of gaps between the rivet head and the countersink is undesirable. Detection of gaps traditionally involves sectioning through rivet joints. Two concerns exist for this method of evaluation: it provides data only from the sectioned plane, and it has potential to alter the gaps. X-ray computed tomography (CT) was used to validate the effectiveness of the tradition sectioning method. It was revealed that the sectioning process generally increased the size of gaps. CT images also revealed that the gaps are not necessarily uniform around the rivet.
Standard

Wrought Nickel and Nickel-Related Alloys

2018-02-15
CURRENT
J470_201802
This Report presents general information on over 50 alloys in which nickel either predominates or is a significant alloying element. It covers primarily wrought materials, and is not necessarily all inclusive. Values given are in most cases average or nominal, and if more precise values are required the producer(s) should be contacted. This report does not cover the so-called "superalloys," or the iron base stainless steels. Refer to SAE J467, Special Purpose Alloys, and SAE J405, Chemical Compositions of SAE Wrought Stainless Steels, respectively, for data on these alloys.
Standard

Wrenches, Box and Open End Combination Twelve Point, High Strength, Thin Wall, Metric

2004-01-23
HISTORICAL
MA4535
This SAE Metric Aerospace Standard (MA) provides dimensional, performance, testing and other requirements for high strength, thin wall, double head box and combination wrenches which possess an internal wrenching design so configured that, when mated with hexagon (6 point) fasteners, they shall transmit torque to the fastener without bearing on the apex of the fastener's wrenching points. This standard provides additional requirements beyond ANSI B107.9 appropriate for aerospace use. Inclusion of dimensional data in this document is not intended to imply all of the products described therein are stock production sizes. Consumers are requested to consult with manufacturers concerning lists of stock production sizes.
Technical Paper

World Wide Escort/Lynx Engine Design and Development

1981-02-01
810008
In 1981, Ford Motor Company introduced a new family of fuel efficient four cylinder engines world wide. These engines, based on a compound valve arrangement in a hemispherical combustion chamber, were specifically designed for installation in light weight front-wheel-drive vehicles. Ford Research efforts were integrated with the resources of Ford U.S. and Ford of Europe to design and develop the engine in a compressed time frame. The technical and organizational efforts to accomplish this task, as well as, the design and development are discussed.
Technical Paper

Workspace Analysis and Visualization for Santos'™ Upper Extremity

2005-06-14
2005-01-2739
Workspace is an important function for human factors analysis and is widely applied in product design, manufacturing, and ergonomics evaluations. This paper presents the workspace analysis and visualization for Santos™ upper extremity, a new virtual human with over 100 DOFs that is highly realistic in terms of appearance, behavior, and movement. Jacobian Rank deficiency method is implemented to determine the singular surfaces. The joint limits are considered in this formulation; three types of singularities are analyzed. This closed-form formulation can be extended to numerous different scenarios such as different percentiles, age groups, or segments of body. A realtime scheme is used to build the workspace library for Santos™ that will study the boundary surfaces off-line and apply them to Santos™ in the virtual environment (Virtools®). To visualize the workspace, we develop a user interface to generate the cross section of the reach envelope with a plane.
Technical Paper

Working Fluid Properties Variation During Combustion in Premixed Charge Hydrogen Engines

2012-09-10
2012-01-1646
Several studies have been performed to investigate the effects of using hydrogen in spark ignition (SI) engines. One general conclusion that emerged was that stoichiometric operation of premixed charge hydrogen engines features increased losses compared to other fuels such as methane. Most studies attribute this higher loss to increased rates of heat transfer from the working fluid to the combustion chamber walls. Indeed, heat flux measurements during combustion and expansion recorded much higher values for hydrogen compared to methane stoichiometric operation. With regard to fluid properties, using the same net heat release equation as for gasoline engines results in an over prediction of heat losses to the combustion chamber walls. Also, the variation of specific heats ratio greatly influences calculated values for the rate of heat release. Therefore, a more detailed analysis of heat losses is required when comparing hydrogen to other fuels.
Technical Paper

Work Extraction Efficiency in a Series Hybrid Opposed Piston Engine

2021-09-21
2021-01-1242
This work investigates the development of a novel series hybrid architecture utilizing a single cylinder opposed piston engine. The opposed piston engine presents unique benefits in a hybrid architecture such as its lower heat transfer due to a favorable surface area to volume ratio and lack of a cylinder head, as well as the thermodynamic benefits of two stroke operation with uniflow scavenging. A particular focus of this effort is the work extraction efficiency of two design concepts. The first design concept utilizes a geartrain to couple the crankshafts of the engine in a conventional manner, providing a single power take-off for coupling to an electric motor/generator. In this design, the large inertia of the geartrain dampens the speed fluctuation of the single cylinder engine, reducing the peak torque required to for the electric machine. However, the friction losses caused by the geartrain limit the maximum work extraction efficiency.
Standard

Wire and Cable Marking Process, UV Laser

2012-12-11
HISTORICAL
AS5649
This standard is applicable to the marking of aerospace vehicle electrical wires and cables using ultraviolet (UV) lasers. This standard specifies the process requirements for the implementation of UV laser marking of aerospace electrical wire and cable and fiber optic cable to achieve an acceptable quality mark using equipment designed for UV laser marking of identification codes on aerospace wire and cable. Wiring specified as UV laser markable subject to AS4373 Test Methods for Insulated Electric Wire and which has been marked in accordance with this standard will conform to the requirements of AS50881.
Standard

Wire and Cable Marking Process, UV Laser

2019-10-21
CURRENT
AS5649A
This standard is applicable to the marking of aerospace vehicle electrical wires and cables using ultraviolet (UV) lasers. This standard specifies the process requirements for the implementation of UV laser marking of aerospace electrical wire and cable and fiber optic cable to achieve an acceptable quality mark using equipment designed for UV laser marking of identification codes on aerospace wire and cable. Wiring specified as UV laser markable subject to AS4373 and which has been marked in accordance with this standard will conform to the requirements of AS50881.
Technical Paper

Windshield with Enhanced Infrared Reflectivity Enables Packaging a Driver Monitor System in a Head-Up Display

2021-04-06
2021-01-0105
Integration of a driver monitor system (DMS) in a head-up display (HUD) gives the monitor camera a continuous view of the driver’s face, since the driver always faces the road ahead. However, with both infrared (IR) illuminator and IR camera packaged in the HUD, reflectivity of the windshield is important at IR wavelengths used by the camera. Not only is windshield IR reflectivity important for a clear camera image of the driver’s face, but increasing windshield reflectivity also decreases the effect of ambient sunlight on the camera image of the driver’s face. We describe a method to measure windshield reflectivity, both for the 940 nm band used by a DMS, and for visible light for the HUD. The measurement method uses a fiber-optic spectrometer, two collimating lenses, and a method to compensate for sample tilt. The lenses are mounted on a stage that adjusts the height above the sample.
Technical Paper

Windshield Shape Optimization Using Neural Network

2004-03-08
2004-01-1156
Wipe quality of wiper systems is influenced not only by the definition of the wiper system, but also by the shape of the glass. In order to optimize the overall performance of the system, Valeo Wiper Systems has developed an optimization algorithm, which is based on geometrical criteria. The multi-criteria objective not only considers wipe quality but also constraints by glass feasibility and respect of optical standards. As the direct derivation of the objective functions is not available, a neural network approximation is used at the place of the real function. A neural network with several outputs enables the engineer to include his knowledge in the optimization loop by changing disciplinary weights.
Technical Paper

Windshield Optics

1970-02-01
700480
Some undesirable optical effects that arise from design of windshields-such as double images, distortion, astigmatism, and differential deviation of line of sight-are discussed. The reasons for, and methods of eliminating, “ghost” images are reviewed. Curvature and tilt angle are principal design parameters available for control of ghost images. Another factor involved in double images is wedge. Several illustrations show how cylindrically curved auto glass produces astigmatism. Glass parameters which produce astigmatism of 1/4 diopter are rather severe, however. The amount of differential deviation depends on angle of view, and on curvature, thickness, and refractive index of the glass. It is desirable to minimize differential deviation since it may result in error in making quick assessments of traffic situations.
Technical Paper

Windage Tray Design Comparison Using Crankcase Breathing Simulation

2013-04-08
2013-01-0580
The conflicting requirements of better fuel economy, higher performance and lower emissions from an automobile engine have brought many new challenges that require development teams to look beyond conventional test and seek answers from simulations. One of the relatively unexplored areas of development where frictional losses haven't been completely understood is the flow in the crankcase. Here computational engineering can play a significant role in analyzing flow field in a hidden and complex region where otherwise testing has serious limitations. Flow simulation in the crankcase poses significant complexity and provides an opportunity to enhance the understanding of underlying physics by using multi-physics analyses tools available commercially. In this study, air space under the piston and above the oil level in oil pan is simulated. It is known that bay-to-bay breathing and windage holes account for considerable amount of power losses in the crankcase.
Technical Paper

Wind-Tunnel Investigation of the Forebody Aerodynamics of a Vortex-Lift Fighter Configuration at High Angles of Attack

1988-10-01
881419
Results of a recent low-speed wind-tunnel investigation conducted to define the forebody flow on a 16% scale model of the NASA High Angle-of-Attack Research Vehicle (HARV), an F-18 configuration, are presented with analysis. Measurements include force and moment data, oil-flow visualizations, and surface pressure data taken at angles of attack near and above maximum lift (36° to 52°) at a Reynolds number of one million based on mean aerodynamic chord. The results presented identify the key flow-field features on the forebody including the wing-body strake.
Technical Paper

Wind Tunnel Measurements of Simulated Glaciated Cloud Conditions to Evaluate Newly Developed 2D Imaging Probes

2019-06-10
2019-01-1981
Instrumentation that has been used for characterization of mixed-phase and glaciated conditions in the past, like the OAP probes, are subject to errors caused by variations in diffraction on the images away from the object plane and by the discrete nature of their particle detection and sizing. Correction methods are necessary to consider their measurements adequate for high ice water content (IWC) environments judged to represent a significant safety hazard to propellers and turbofan engine operability and performance. For this reason, within the frame of EU FP7 HAIC project, instrumentation characterization and validation is considered a major element need for successful execution of flight tests campaigns. Clearly, instrumentation must be sufficiently reliable to assess the reproducibility of artificial clouds with high ice water content generated in icing tunnels.
X